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Abstract. We study a class of reaction-diffusion models extrapolating continuously between
the pure coagulation-diffusion casé ¢+ A — A) and the pure annihilation-diffusion one

(A + A — @) with particles input § — A) at a rateJ. For dimensiord < 2, the dynamics
strongly depends on the fluctuations while, fbr> 2, the behaviour is mean-field like. The
models are mapped onto a field theory whose properties are studied in a renormalization group
approach. Simple relations are found between the time-dependent correlation functions of the
different models of the class. For the pure coagulation-diffusion model the time-dependent
density is found to be of the foratz, J, D) = (J/D)Y° F[(J/D)* D], whereD is the diffusion
constant. The critical exponefitand A are computed to all orders in= 2 —d, whered is the
dimension of the system, while the scaling functiBris computed to second orderdn For the
one-dimensional case an exact analytical solution is provided whose predictions are compared
with the results of the renormalization group approachefes 1.

1. Introduction

It is by now well established that reaction-diffusion models can have a rich dynamics
governed in low dimensions by fluctuations. Several physical quantities behave as
power laws and the associated critical exponents have some universal properties. The
renormalization group (RG) method developed in the framework of equilibrium statistical
physics [1], provides a suitable tool to study such dynamics. In order to be able to approach
the problem of reaction-diffusion processes in terms of the RG method, one has first to
go from the initial microscopic master equation to a coarsed-grained description. The
standard way to do this consists of using a Fock space formalism (see the works of Doi [2],
Grassberger and Scheunert [3] and Peliti [4]). One ends up with a model whose dynamics is
defined by the action of a continuous field theory. Among several applications, this method
has been used to study the two-species annihilation reaction problenB — ¢; for a
homogeneous initial state with equal densities [5], or unequal densities [6], the rigorous
predictions of Bramson and Lebowitz [7] have been reproduced and novel results obtained.
For the case in which the two species are initially spatially separated, Howard and Cardy
[8] have confirmed scaling arguments developed by Cornell and Droz [9].

Another interesting family of reaction-diffusion processes is formed by the one-species
diffusion-annihilation and the diffusion-coagulation models. In 1986, Peliti [10] showed
that the coagulation-diffusion model + A — A belongs to the same universality class
as the annihilation-diffusion one4 + A — . He also showed that the associated field
theory is super-renormalizable. Thus, only the coupling constant needs to be renormalized.
Moreover, this renormalization can be performed to all orders4nd, — d, whered,, the
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1102 P-A Rey and M Droz

upper critical dimension, is 2 in this case. Peliti showed that the concentigtipof the
reactant in the long time regime behaves as

c(t) xt™ o= % (t — 00).

However, he made no predictions concerning the amplitude, neglecting the initial conditions
in its approach. It turns out that the initial conditions may play a very important role. This
aspect has been taken into account within this formalism only by Ohtsuki [11] in 1991 and
by Friedmanet al [12] in 1992. In 1994, Lee [13] gave the first complete RG analysis of
the annihilation-diffusion model. It turns out that the initial conditions show up as a local
source into the action. Lee was able to treat this term to all orders in perturbation theory. It
was shown later (see [8] for the two-species annihilation and [14] for the one-species case)
that such infinite resummation is equivalent to a shift of the fields in the action by their
classical values.

Meanwhile, in 1993, Droz and Samv [15] addressed the problem of both annihilation-
diffusion and coagulation-diffusion processes in the presence of a sgurEgarticles:

A+AS g A+ASa g5 A

Performing a renormalization procedure, they found that the density of particles obeys the
scaling law

d/(d+2)
daLD):(D> FI(J/ D)% @+ py] (1)

for sufficiently small values of/. However, the scaling functiotF was not computed.
Making ad hocassumptions on the asymptotic behaviour7ofn the limitst — oo, they
showed that the stationary particle density

1/6 2
c~JY s=1+-
was approached with a characteristic relaxation timgiven by
2
d+2
Moreover, considerations on the — 0 limit allow them to reproduce the scaling laws
postulated phenomenologically bya&z [16], namely

T ~J A A=

1

These different exponents are known to all orders incag 2 — d expansion. This is

due to the fact that the propagator needs no renormalization and that the coupling constant
can be renormalized exactly. Thus, the values of the exponents can be obtained by pure
dimensional analysis, independently of the properties of the initial state. In contrast, to
compute the scaling functiofr it is crucial to take into account the initial condition.

The goal of this paper is two-fold. First, to provide a complete renormalization group
analysis of such models by computing not only the exponents but also the scaling function
F defined by (1) in the framework of an expansion. This is done to first order énin
section 2. Second, to give an exact analytical solution of the one-dimensional coagulation-
diffusion model with infinite reaction rate and source by extending to a time-dependent
regime an approach developed by Doering and ben-Avraham [17]. These exact results are
compared with the RG predictions in the linait= 1 in section 3. Remarks and conclusions
are given in section 4.
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2. Field theoretical approach and renormalization group analysis

2.1. The model and the associated field theory

We shall not derive here in detail how one obtains the field theoretical model. The interested
reader is referred to the original papers of Doi [2], Grassberger and Scheunert [3] and Peliti
[4,10], or to the short reviews presented in [13] and [18]. As the number of particles is not
conserved, the basic idea is to introduce a Fock space representation. The time evolution
operator of the problem can then be cast in a path integral form which, in the continuous
(coarsed-grained) limit, is characterized by the action:

t
S,la,a,J] = / ddx/ dt_[a(‘i’ — DV2>a + yraa® + rala® — J&}. (2)
0

A whole class of models indexed by the parametet [1, 2] is thus defined. Foy =1
one has the pure coagulation-diffusion model and jfo= 2 the pure annihilation one.
For 1 < y < 2, both reactions are possible with a given probability depending ¢see
[18] for more details). The coupling constahtis related to the reaction ratesand k
viar =y +Dgt?andy = (y +2)(7 + 1)1, wherey = k/g and/ is a characteristic
microscopic length of the original model. The particles diffuse in an infittmensional
space with a diffusion constar®. The above action could model two different types
of colliding particles in some appropriate limits: first, point-like particles living od-a
dimensional hypercubic lattice [13] where, in this caéds the lattice constant; second,
extended particles living in d-dimensional continuous space [18] afidbeing the typical
size of the particles.

The time- and position-dependent fields and a, respectively, obey bosonic-like
commutation relations. The field(x, ¢) is related to the local particle density, while the
auxiliary fielda(x, ) has no particular physical meaning.

Within this formalism, correlation functions are expressed by functional integrals

GV ({xi, 35+ =N*1/Da:/>aa(x1,z1)...a(xN,zN)

XA(XN41, tn41) - AKXy s tyey) X(=Sy [a, a, J]) 3)

where N = [ DaDa exy(—S,[a, a, J]) is a normalization constant, which turns out to be
one. Anticipating this fact, we shall now omit it. The particle densityx, r) at pointx
and timer reads

cy(x,t) = /Da Daa(x,t)exp—S,la,a, J]). 4)

It can be shown [13, 18] that the correlation functions of diffenremhodels are closely
related. In particular, one has
Syla,a, J1 = Silya,y*a, yJ]
which implies for the concentration
¢y, 15 0) =y ta, ny ). ()

Accordingly, it suffices to study one particular model belonging to the class to know the
behaviour of the other members. From now on, we shall study the pure coagulation-diffusion
model ¢/ = 1), with an initial state empty, whose action is

t
S[a,a,1]=/ ddx/ df[&(gft_—DV2>a+kaa2+k&2a2—JZz:|. (6)
0
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For the sake of simplicity, we do not write the indgx= 1 in the following. When
J =X =0, one has a free theory (pure diffusion) and the spatial Fourier transform of the
free propagator is simplGo(p, 1) = 6(t) exp(—Dp?t), whered(r) is the usual Heaviside
function. Simple power counting shows that the upper critical dimension of action (6) is
dy = 2. Ford > d,, the quadrivertex.a’a? is irrelevant. Belowd,, the quadrivertex.a’a?
is relevant and leads to singularities that have to be renormalized.=Atl,, this vertex is
marginal, and one expects logarithmic corrections to the mean-field behaviour.

2.2. Mean-field solution

We first consider the case > d, = 2. The full action may be replaced by an effective
one, without the quadrivertex®a? and in which the coupling is replaced by an effective

coupling Aef, depending on the microscopic length The behaviour is then mean-field
like. The equations of motion far anda are obtained from the effective action, by the
usual saddle-point argument and read

58 9

== - DV? reffa’ — J = 7

s (8[ )a+ eff d J 0 ( )
and

58 9

= == +DV?)a+ 2xeaa =0. (8)

da ot

Assuming thaz anda are homogeneous, it follows that, as expectee; 0 is a solution

and (7) becomes

da 2
— = —Aeffa“+J
ot

with the initial conditiona|,—¢ = 0. Thus, the mean-field or classical solution is
J exp(—2+/ JAeti t)

ag(t) = [—(1-2

et 1+ exp(—2y/ JAeti )

where the subscript ‘cl’ stands for classical.

©)

2.3. Renormalization

Let us now consider the problem below two dimensions. A brute force computation of
the particle density from (4) leads to divergences. Thus, the coupling constaaéds
to be renormalized. Neither the fieldsand a nor the diffusion constanD require a
renormalization [10, 13] and, as a consequence, the particle inpuf rddes not either.

We define the temporally extended vertex functi@p, 7) to be the sum of the diagrams
shown in figure 1. These diagrams can be summed to all orders and the Laplace-transformed
vertex function reads (see [13])

A
= 1+ 20/@r DYAT Le)(s + SDpR)</2

We defineggr, the dimensionless renormalized coupling (or running coupling constant),
using the minimal subtraction scheme. That is we define

A(p,s) (10)

. A
8rR = Zgk Eﬁ (11)
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Figure 1. Diagrammatic representation of the temporally extended vertex funttien, —t1).
The propagator is represented by a full line. Here the diagrammatic expansion for the trivertex
raa? is shown. Similar diagrams can be drawn for the quadvert?.

wherek is a normalization point andy = 1+ Y 2, a;gh. Thea; are chosen so as to
exactly cancel the poles of ordefelappearing ink(p, s). From (10), we have
A

A@J)=1+K4M1+€&QLQVQEDQ

whereA.(p, s) = O(e), for any p ands. With (11), one finds
) _ K gRrR
21D Zg+ gr/€ + grA(p, 5)

According to our prescription, we have to choese= —1/¢ anda; = 0 for i > 1, giving
Zy = 1— gr/€ (exact to all orders). Inserting this result into (11), we find

KA KA\t
&R (1 ) . (12)

~ 21D + 21t De
The computation of thg function is thus straightforward:

0gr
B(gr) = KW = —€gr+ gé-
It is exactly quadratic irgg and has a fixed point given b§(gs) = 0 atgi = €.

Using (12), we may express the bare coupling in terms of the renormalized one:

e A &R gé
. _ — et SR 13
2rD  1—gr/gh sR gR 13)

The perturbation theory can then be written as an expansion in poweggs of

2.4. Renormalization group equations

An arbitrary renormalized correlation functicﬁg’ﬁ({xi, ti}’lv“‘_’) (where the subscript R
stands for renormalized) is related to its bare expression (3) through

GRN (i, YN gr, D, T, 1) = GVN (o, )N 0, D, ).

The independence of the bare functions on the normalization scale can be expressed via the
condition

d d G o
K— + B(gr)— | GR™ (xi, t:}N ™5 gr, D, J, k) = 0.
oK 0gRrR

The formal solution (obtained by the method of characteristic) is

GRN ({xi, t )Y gr, D, J, k) = GR™N (i, )Y Y5 gr(0), D, J, p) - (14)
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with
gh—gr N\ "
&R0 = 22 <1+ Rpf) . (15)
8R
Note that in the smalp limit, gr(p) — ga-

We can implement (14) with a dimensional analysis. The dimensions of the different
guantities, expressed in term of momentyurand energyE are

[(]=E1 [D] = Ex~? [J] = Ex?
[a=«'  fal=1  [GYV(xi 6] =&
Thus,
G Y (i 1}V gro DL k) = KVGRN (fiexi, 12D}y Y gr 19720 /D, D). (16)
The combination of (14) and (16) leads to
GV ({xi, 14V gr. D, T, k)
= ()" GR N (prxi, (00)2Di}y ™V gr(p). 1. (o) ~*"21 /D, D). (17)

We can then use the following strategy to compute the correlation functions: first an
expansion in power of is established; then it is converted into an expansion in powegg of
through (13). The singularities inare eliminated using the renormalization scheme. Now,
for a correctly renormalized theory, we can rewrite ggeexpansion into ar expansion
using (17) and (15). Indeed, introducing thelependence through (17) and letting- 0,
gr(p) — gk, one obtainsGR™" as an expansion in power ef

Up to now p is an arbitrary parameter, and several choices are possible. For example,
if we choosep such that

J
—d-2
(k)™ 5 = 1 (18)
the limit o — 0 becomes equivalent t6 — 0: when the source rate is vanishing small,
the running coupling approaches its fixed point value.
Another choice is

(o)?Dy = 1
and the limitp — 0 may be exchanged with — oo. However, from (17), we see that
(pk)~*2J/D diverges. Thus, with this choice, one should know the behaviou]iébfV
for arbitrary large values off. However, for large values af, the e-expansion breaks

down (see appendix A). Accordingly, we shall chogsexccording to condition (18) in
what follows.

2.5. Density calculation

The density is first calculated using (4), in the framework of a perturbation expansion in
power ofA. At the tree level, we find out the mean-field result and we can directly use the
RG equation (no renormalization is needed). The first correction to the classical behaviour
is given by the one-loop contribution. The corresponding diagram may be calculated using
the action obtained from (6) by shifting the fieldby its classical value:

t T/
S[n, 7, J] = / ddx/O dt[ﬁ(at_ —DV2+2kac|>n+Aﬁn2+Aﬁ2(a§|+2ac|17+772)}
(19)
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wheren = a —aq andn = a, with a¢ given by (9). The free propagator (which is also the
classical response function) is

coshv/ T t) )2
coshv/JIrt) /)~

Note that because of the initial conditioi is not invariant under time translation.
Obtaining divergent expressions for the one-loop corrections, we shall renormalize them
using the renormalization scheme developed above. We give below a summary of these
results.

Ga(p,t,1) =0(t —t') exp[-Dp?(t — ﬂ)](

2.5.1. Tree level. Applying the RG formalism as developed above on the mean-field
equation, we find, fou sufficiently small,

1 J\4/@+2
C| t; 7D1]1K)=<)
R(; &R >\ D
( 2 exp[-2+/2e(J/ D)%+ Dt
x| 1—
1+ 2expl-2+/2re(J/D)%@+2 Dy]

which is universal (independent gg). This result is valid for any time, because we only
need to tune/ to be in the critical domain.
For smallr we find the expected result

cr(t) = Jt + O(t?)
and for long time { — o0)

)[1 + O(e)] (20)

d/(d+2)
r(t) = b (J> : {1 — 2 exp[-2v/2me(J/D)?“*2 Dt]}[1 + O(e)]. (21)
V2me \ D
The steady-state value is thus given by
1 J\4/@+2
o= (5) L+ 22)

and it is approached exponentially in time as
8er(1) = cr(t) — cr(00) x Xpl-ye(J/ DY/ *2D1] (1 > 00)  (23)
with y. = 24/2¢[1 4 O(e)].

2.5.2. One-loop corrections.The diagram corresponding to the one-loop correction is
given in figure 2; its analytic expression is

t 2
Wity = Coségjﬁ” [ e[ o f (‘Z’i”;d expl-2Dp?(t; — 1]
cosi (/T aty) sintf (/T rt1)
% cosH (/T Aty) '
The integral over the momentum gives the factor [8, — t1)]~%/?. We thus obtain
27 (1+e/2 1 1 e
P = (87 D)4/? cosi(«/Tit) /o de/O dux ™
cost[v/J axa(1 — x1)] SintP[V/ T Axa(1 — x1)]
x cost(v/JAxz) '
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t 1y ty

-0

-p

Figure 2. One-loop diagram for the density, using action (19). The double line stands for the
free propogatoiG¢ and the dot for the vertexa?li?.

In the framework of are-expansion, we eventually find (treating /2

function [20], see appendix B)

as a generalized

@ 2J titer2 2sinh(2/JAt) — 2V Jat ¢ (VT Ar)
() = - + + O(e)
(81 D)2 costf(v/JAt) \ € 2/ Tt A
where

1
6 =& /0 dr; In xz SintP(Exz)

s g [ " o <cosﬁ[5xz(1—x1)] SinP£x,(1— xp)] Sinﬁ(§x2)> .
0 0

X1 cost (£xy)

Putting together the mean-field result and the one-loop correction, we verify that the density
is indeed divergence free, and using the RG equation (17) we find, for small values of

1 I\ 2/(d+2)
t;gr, D, J, k) = — tanhv2re (J/D Dt
cr(t; gr K) Nz <D) { V2re (J/D) ]

e[ d[V2me(J ) D)%+ Dy]
2| cosH[v/2re(J/D)?/@+2 Dy]

V2me(J) D)% @+ py
tanhv/2re(J/ D)%+ Dt] — )} o) 2}
X( an me(//D) 2 cost[«/2e(J /) D)?/(@+2) Dr] FOE

1
+5 In[87(J/ D)% @+ Dt]

D

We immediately identify the scaling functiof defined in (1). Taking the limit — oo we
find

1 7 \4/@+2 2
o (1) ()] e

whereyg is the Euler constantf ~ 0.5772). Unfortunately, due to the complicated form
of ¢, we are unable to give a more compact form for the asymptotic.ofNote that the
empty initial condition implies that litp, ¢ cr(z) = 0.

Let us consider two particular cases of interest. The first one is theccask (d = 1).
Then the steady-state density is

d/(d+2)
- () F[(J/ D)%+ pq]. (24)

1 [J\®
m(oo):m(l)) L—L0e—In2r)+--1 (26)

and it is asymptotically approached (at the tree level) as

Scr(r) x exp[=~/87 (J/D)?3D1]. (27)
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We shall compare the accuracy of these expressions with exact results in the next section.
Note, however, that, in principle, nothing ensures us that the terms we neglected are small.
The second case is= 0 (d = 2). The running coupling is given by
8R
1-grlnp
which goes to-(In p)~* whenp — 0. By replacing this expression in our previous formula,
we find for the steady-state density

gr(p) =

2] 1/2
cr(00) = () [nJ)"Y2 4 0(nJ) Y] (28)
D
and
Scr(t) o« exp[—+/8r (J/D)Y2In(J)Dt] (29)

as anticipated, logarithmic corrections to the mean-field result are obtained.

3. Exact results in one dimension

A large amount of work has been done to solve exactly one-species diffusion reaction models
in one dimension (see, for example, [21]). In particular, the diffusion-annihilation and the
diffusion-coagulation reactions have been considered with an input of particles. In the
diffusion-annihilation case, &z [22] obtained the steady-state concentration by mapping
its model to the kinetic Glauber-Ising model [23]. In 1988, Doering and ben-Avraham
[24] calculated the time-dependent concentration exactly for a simple diffusion-coagulation
model, using the interparticle distribution function. Since, their method has been generalized
to other diffusion-coagulation processes (see, for example, [25]) and in particular the steady-
state concentration has been obtained [17] for the diffusion-coagulation with an input source
of particle.

In this section we aim at testing the validity of the RG predictionsdoe= 1. For
this purpose we shall extend Doering’s and ben-Avraham'’s results and compute the time-
dependent concentration.

We consider an infinite chain (our one-dimensional space) initially empty, and we allow
particles to appear randomly at rate(per unit time and per unit length). Thus initially

de(r)
dr|,_o

where ¢(¢) is as before the particle concentration. The particles diffuse on the line
(with a diffusion constanD) and when two particles meet they instantaneously coagulate
(A+ A — A). Note that this model is the same as the pure diffusion-coagulation process
of section 2, but with an infinite reaction rate Of course, for such a reaction rate, the
perturbation expansion in power bfis meaningless and one may argue that the two models
are not equivalent. However, by examining the relation (12) between the renormalized
coupling gr and &, we see that when is infinite, gr = gs. We argue that the infinite
reaction rate limit may be obtained by taking the fixed point coupling ligt-& gg), that
is to say by taking the. — oo limit after having performed the path integrals. This will
be confirmed in the following, at least in one dimension.

In a one-dimensional space, the particle concentration can be related to the probability
E(x,t) that an interval of lengtlr > 0 is empty at time, via

_OE(x,1)

dx x=0

c(t) =
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As shown by Doering and ben-Avraham [1F](x, ¢) has the advantage of obeying a closed
equation of evolution, namely

dE 92E

ot 9x2
with the two conditions
EO,1)=1 E(co,t) =0. (31)

From this equation, one can immediately obtain the steady state, by setting the left-hand
side to zero. One then recognizes the Airy equation, whose solution is (taking into account
conditions (31))

_ Ai((J/2D)"3x)

E
(x, 00) Ai (0)
where Ai(z) is the Airy function (see [26]). As a consequence, the asymptotic concentration
reads
A0 [ T \Y3
=— — . 32
¢(®) = =470 <21)) (32)

Ai’(z) is the first derivative of Alz). Note that Ai(0) < 0.

Before comparing (32) with the RG results, we shall compute the time-dependent part
of the concentration. For this purpose, we shall solve (30) using the Laplace transform
E(x,s) defined byE (x, s) = [, dr e E(x, ). Equation (30) becomes
BZE(x, s)

9x2
where E(x, 0) is the initial condition (for an empty systent,(x, 0) = 1). Equation (33)
is an inhomogeneous second-order ordinary differential equation. Its general solution is the

sum of the homogeneous solutidy(x, s) and a particular solution. The homogeneous
solution is

2D —(Ux+9)E(x,s)+E(x,00=0 (33)

. —2/3
En(x,s) = <2D> [a1(s)Ai(z) + a2(s)Bi(z)]

wherez = (J/2D)"%3(Jx + 5)/2D, a1(s) andax(s) are two unknown functions of and
Bi(z) is the second Airy function [26].
Writing E(x, s) = (J/2D)"%3A(z, s), (33) becomes

8%A(z, 5) 1
_ — A = ——
02 e =75

for which a well known solution is
Az, s) = — f du[Ai ()Bi(z) — Ai(2)Bi(v)].
2D Jo

The two boundary conditions (31) permit us to determine the two unknown functi@ns
anday(s). We eventually find for the general solution of (33)

" T J -2/3 ) E+o ) ] 1 E+o )
E(x,s) = 2D<2D) {AI €3 +0)/ dv Bi(v) + Bi(¢ +0)[3 _[o dv Ai (v)i|

AigE+o) 1 . o . 1
+Ai(o)|:7m + BI(O’)(/(; dv Ai(v) — 3>i|} (34)

where¢ = (J/2D)Y3x ando = (J/2D)~?/3s/2D.
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The probability £(x, t) is then obtained by Laplace inverting (34). For- 0, we
only have to care for the poles & (x,s). They are located at = 0 and ato = a,,
n=1,23,..., wherea, is thenth zero of Aix) (a, < 0). We finally obtain

A | XAE a1 @iy~ N\ ake
E(x,t)_Ai(0)+;Ai/(an)_an+nB|(an)(/0 dv Ai (v) 3>}e

with T = 2Dt (J/2D)%? and
JIN A0 &1 _ o N e
c(t) = (20) {— A ©) —; o +7rB|(a,l)</O dv Ai (v) — 3>}e } (35)

We are now in position to compare these results with the RG resultsfof.. For the
steady state, the RG method gives (up to the one-loop corrections) (26)

J 1/3
cr(00) >~ 0.53<D) (36)
(for small J) while (puttings = oo inside (35)) the exact solution gives
AI'(0) [ T 1/3 J\Y3
=— — ~ 0.58{ — 37
() =="5 0 <2D> (D) (37)

(for arbitrary J). Surprisingly, the difference is only of the order of 10%.

The comparison for the approach to the steady state is less convincing, mainly due
to the fact that we do not know the one-loop corrections. The RG method gives, from
equation (27),

1 2\Y2 /g3
Ser(t) = —|:1— E(VE—m 27T)i| <7‘[> <D> exp[_\/g(J/D)Z/th]

1/3
~ —1.06<D> exp[-5.01(J/D)?3Dr] (38)

whereas the exact result is

a 1/3
de(t) = [;1 +nBi(al)(/o dv Ai(v) — :13)} <ZJD> e lailr

1/3
~ —1.10<D> exp[—2.95(J /D)?3Dr] (39)

(with a; >~ —2.33). Both amplitudes in front of the exponential are in good agreement
(because we used the one-loop result of the steady state). However, the tree-level amplitude
into the exponential is quite different (of almost 70%) from the one given by the exact theory.
The inclusion of the one-loop correction should lead to a better agreement.

Note that the exact results are valid without any restriction/pim contrast to the RG
results, which apply only for small. This restriction was introduced to ensure thatis
inside the critical domain (i.egr neargg). In view of the predictions of the exact theory,
it turns out that this restriction ovef is unnecessary. The coupling stays inside the critical
domain for any value off. This justifies why, whe. — oo, gr — gi. We can make this
point clearer. Indeed, expanding the running coupling constant (15) for smale can

identify
p b A d+2)/(2—d)
- 21 De

as a crossover scale fgr. The critical domain is thus obtained when« J.. This scale
grows whenx grows or where decreases.
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4. Discussion and conclusive remarks

We have shown that the RG method is a suitable formalism to compute the density in a
wide class of diffusion-reaction models, with an input of particles. In particular, we have
easily calculated the critical exponents in arbitrary dimension. However, the computation
of the universal scaling function is generally much more difficult (see, for example, (24))
and can only be achieved within a power expansion #a2—d. However, the comparison

of the first-order results for = 1 are not too far from the results obtained exactly in one
dimension by a different approach.

One of the main interests of the RG method is that, contrary to most unidimensional
exact approaches, the RG approach is not restricted to the computation of the particle
density and higher correlation functions can also be calculated (although the computation
can become quite involved, see [13]). Moreover, the RG approach provides a framework
in which universality can be established. This is not the case of an exact solution obtained
for particular models.

Another advantage of the RG approach is the fact that the properties of a whole class of
model can be simply related. This allows us using (5), and knowing the particle density for
the diffusion-coagulation model, to obtain the density of any mixed annihilation-coagulation
process. In particular, for the pure diffusion-annihilation modei(2) in one dimension,
one recovers the steady-state density previously calculatechby R2].

The present work can be generalized in several directions. GeneralizatioA te- ()

(m > 2) reactions with a source of particles is also straightforward. Indeed, following Lee
[13], it turns out that apart the lowering of the critical dimensioniio= 2/(m — 1), only

minor changes occur (for example, the amplitudes becerdependent). This is due to the

fact that in our renormalization scheme only the fixed pgihof the coupling is modified.

The structure of the equations remain unchanged and, in particular, the RG equation (17)
still holds. As a consequence, the critical exponents belgware the same as fat = 2.

The steady-state concentration can be written {fet d,) as

7 )d/(d+2)

Cm_R(OO) = A, (D

and the universal amplitudg,, can be computed within astexpansion. The approach to
the steady state is still exponential withkdependent amplitudes. Extension to the reactions
mA — [A with [ <m (m > 2) is also possible (see [13]).

Another natural extension of this work is to consider the possibility of reversible reaction
(for example,A + A = A). For such a system a completely different physics is expected.
Indeed, a quick investigation of the associated action shows that the upper critical dimension
is no longer 2 but 4. In addition, it appears that a wavefunction renormalization is needed,
giving rise to anomalous dimensions. The computation of scaling functions for this problem
is currently under investigation.

Appendix A

We aim to show that in the limif — oo, the e-expansion breaks down. For this purpose,

let us consider the action (19) obtained by the shift of the fieldy its classical value.

The shift permits us to suppress the source term in the action; in other words, shifting the
field is equivalent to perform the infinite sum generated by the source term. One could
then think that any quantity can be calculated for arbitraryThis is, however, not true for

the following reason. To calculate a given quantity, we expand the action with respect to
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the A7?(a2 + 2aqn + n?) term. We shall then obtain a power expansion in term @fith
coefficient proportional t(azg,. However, for large/, ag tends to(J/1)Y2. The expansion

in A is partly replaced by an expansion iy which does not lead to artexpansion. The
only possibility to revert this would be to treat non-perturbatively the action, which is out
of the question.

Appendix B

The problem is to compute theexpansion of

1
/ dx x M€ £ (x). (B1)
0

Putting naivelyx =3¢ = x~1[1 4 ¢ Inx + O(e?)] in (B1) clearly fails, because if (0) # 0,

[01 dx x~1f(x) diverges. One way to avoid this problem is to treat*t< as a generalized
function. We shall not give here a detailed discussion of the generalized functions (see [20]
for an introduction). We only quote the result, namely

1 1 1
/0 dex ™ f(0) = L0 + /O dex [ f () — £(O)]

1
+e/ drx 7t Inx[f(x) — F(0)] + O(e?).
0

Note that there is a pole of ordeye
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