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Abstract. We study a class of reaction-diffusion models extrapolating continuously between
the pure coagulation-diffusion case (A + A → A) and the pure annihilation-diffusion one
(A + A → ∅) with particles input (∅ → A) at a rateJ . For dimensiond 6 2, the dynamics
strongly depends on the fluctuations while, ford > 2, the behaviour is mean-field like. The
models are mapped onto a field theory whose properties are studied in a renormalization group
approach. Simple relations are found between the time-dependent correlation functions of the
different models of the class. For the pure coagulation-diffusion model the time-dependent
density is found to be of the formc(t, J,D) = (J/D)1/δF [(J/D)1Dt ], whereD is the diffusion
constant. The critical exponentδ and1 are computed to all orders inε = 2− d, whered is the
dimension of the system, while the scaling functionF is computed to second order inε. For the
one-dimensional case an exact analytical solution is provided whose predictions are compared
with the results of the renormalization group approach forε = 1.

1. Introduction

It is by now well established that reaction-diffusion models can have a rich dynamics
governed in low dimensions by fluctuations. Several physical quantities behave as
power laws and the associated critical exponents have some universal properties. The
renormalization group (RG) method developed in the framework of equilibrium statistical
physics [1], provides a suitable tool to study such dynamics. In order to be able to approach
the problem of reaction-diffusion processes in terms of the RG method, one has first to
go from the initial microscopic master equation to a coarsed-grained description. The
standard way to do this consists of using a Fock space formalism (see the works of Doi [2],
Grassberger and Scheunert [3] and Peliti [4]). One ends up with a model whose dynamics is
defined by the action of a continuous field theory. Among several applications, this method
has been used to study the two-species annihilation reaction problemA + B → ∅; for a
homogeneous initial state with equal densities [5], or unequal densities [6], the rigorous
predictions of Bramson and Lebowitz [7] have been reproduced and novel results obtained.
For the case in which the two species are initially spatially separated, Howard and Cardy
[8] have confirmed scaling arguments developed by Cornell and Droz [9].

Another interesting family of reaction-diffusion processes is formed by the one-species
diffusion-annihilation and the diffusion-coagulation models. In 1986, Peliti [10] showed
that the coagulation-diffusion modelA + A → A belongs to the same universality class
as the annihilation-diffusion one,A + A → ∅. He also showed that the associated field
theory is super-renormalizable. Thus, only the coupling constant needs to be renormalized.
Moreover, this renormalization can be performed to all orders inε = du− d, wheredu, the
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1102 P-A Rey and M Droz

upper critical dimension, is 2 in this case. Peliti showed that the concentrationc(t) of the
reactant in the long time regime behaves as

c(t) ∝ t−α α = d

2
(t →∞).

However, he made no predictions concerning the amplitude, neglecting the initial conditions
in its approach. It turns out that the initial conditions may play a very important role. This
aspect has been taken into account within this formalism only by Ohtsuki [11] in 1991 and
by Friedmanet al [12] in 1992. In 1994, Lee [13] gave the first complete RG analysis of
the annihilation-diffusion model. It turns out that the initial conditions show up as a local
source into the action. Lee was able to treat this term to all orders in perturbation theory. It
was shown later (see [8] for the two-species annihilation and [14] for the one-species case)
that such infinite resummation is equivalent to a shift of the fields in the action by their
classical values.

Meanwhile, in 1993, Droz and Sasvári [15] addressed the problem of both annihilation-
diffusion and coagulation-diffusion processes in the presence of a sourceJ of particles:

A+ A k→ ∅ A+ A g→ A ∅ J→ A.

Performing a renormalization procedure, they found that the density of particles obeys the
scaling law

c(t, J,D) =
(
J

D

)d/(d+2)

F [(J/D)2/(d+2)Dt ] (1)

for sufficiently small values ofJ . However, the scaling functionF was not computed.
Making ad hocassumptions on the asymptotic behaviour ofF in the limits t → ∞, they
showed that the stationary particle density

c ∼ J 1/δ δ = 1+ 2

d

was approached with a characteristic relaxation timeτ given by

τ ∼ J−1 1 = 2

d + 2
.

Moreover, considerations on theJ → 0 limit allow them to reproduce the scaling laws
postulated phenomenologically by Rácz [16], namely

αδ1 = 1 1+ 1

δ
= 1.

These different exponents are known to all orders in anε = 2 − d expansion. This is
due to the fact that the propagator needs no renormalization and that the coupling constant
can be renormalized exactly. Thus, the values of the exponents can be obtained by pure
dimensional analysis, independently of the properties of the initial state. In contrast, to
compute the scaling functionF it is crucial to take into account the initial condition.

The goal of this paper is two-fold. First, to provide a complete renormalization group
analysis of such models by computing not only the exponents but also the scaling function
F defined by (1) in the framework of anε expansion. This is done to first order inε in
section 2. Second, to give an exact analytical solution of the one-dimensional coagulation-
diffusion model with infinite reaction rate and source by extending to a time-dependent
regime an approach developed by Doering and ben-Avraham [17]. These exact results are
compared with the RG predictions in the limitε = 1 in section 3. Remarks and conclusions
are given in section 4.



Renormalization group study of a reaction-diffusion model 1103

2. Field theoretical approach and renormalization group analysis

2.1. The model and the associated field theory

We shall not derive here in detail how one obtains the field theoretical model. The interested
reader is referred to the original papers of Doi [2], Grassberger and Scheunert [3] and Peliti
[4, 10], or to the short reviews presented in [13] and [18]. As the number of particles is not
conserved, the basic idea is to introduce a Fock space representation. The time evolution
operator of the problem can then be cast in a path integral form which, in the continuous
(coarsed-grained) limit, is characterized by the action:

Sγ [a, ā, J ] =
∫

ddx
∫ t

0
dt̄

[
ā

(
∂

∂t̄
−D∇2

)
a + γ λāa2+ λā2a2− J ā

]
. (2)

A whole class of models indexed by the parameterγ ∈ [1, 2] is thus defined. Forγ = 1
one has the pure coagulation-diffusion model and forγ = 2 the pure annihilation one.
For 1< γ < 2, both reactions are possible with a given probability depending onγ (see
[18] for more details). The coupling constantλ is related to the reaction ratesg and k
via λ = (γ̃ + 1)g`d andγ = (γ̃ + 2)(γ̃ + 1)−1, whereγ̃ = k/g and ` is a characteristic
microscopic length of the original model. The particles diffuse in an infinited-dimensional
space with a diffusion constantD. The above action could model two different types
of colliding particles in some appropriate limits: first, point-like particles living on ad-
dimensional hypercubic lattice [13] where, in this case,` is the lattice constant; second,
extended particles living in ad-dimensional continuous space [18] and` being the typical
size of the particles.

The time- and position-dependent fieldsa and ā, respectively, obey bosonic-like
commutation relations. The fielda(x, t) is related to the local particle density, while the
auxiliary field ā(x, t) has no particular physical meaning.

Within this formalism, correlation functions are expressed by functional integrals

GN,N̄
γ ({xi, ti}N+N̄1 ) = N−1

∫
DaDā a(x1, t1) . . . a(xN, tN)

×ā(xN+1, tN+1) . . . ā(xN+N̄ , tN+N̄ ) exp(−Sγ [a, ā, J ]) (3)

whereN = ∫ DaDā exp(−Sγ [a, ā, J ]) is a normalization constant, which turns out to be
one. Anticipating this fact, we shall now omit it. The particle densitycγ (x, t) at pointx
and timet reads

cγ (x, t) =
∫
DaDā a(x, t)exp(−Sγ [a, ā, J ]). (4)

It can be shown [13, 18] that the correlation functions of differentγ models are closely
related. In particular, one has

Sγ [a, ā, J ] = S1[γ a, γ−1ā, γ J ]

which implies for the concentration

cγ (x, t; J ) = γ−1c1(x, t; γ J ). (5)

Accordingly, it suffices to study one particular model belonging to the class to know the
behaviour of the other members. From now on, we shall study the pure coagulation-diffusion
model (γ = 1), with an initial state empty, whose action is

S[a, ā, J ] =
∫

ddx
∫ t

0
dt̄

[
ā

(
∂

∂t̄
−D∇2

)
a + λāa2+ λā2a2− J ā

]
. (6)
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For the sake of simplicity, we do not write the indexγ = 1 in the following. When
J = λ = 0, one has a free theory (pure diffusion) and the spatial Fourier transform of the
free propagator is simplyG0(p, t) = θ(t) exp(−Dp2t), whereθ(t) is the usual Heaviside
function. Simple power counting shows that the upper critical dimension of action (6) is
du = 2. Ford > du, the quadrivertexλā2a2 is irrelevant. Belowdu, the quadrivertexλā2a2

is relevant and leads to singularities that have to be renormalized. Atd = du, this vertex is
marginal, and one expects logarithmic corrections to the mean-field behaviour.

2.2. Mean-field solution

We first consider the cased > du = 2. The full action may be replaced by an effective
one, without the quadrivertex̄a2a2 and in which the couplingλ is replaced by an effective
coupling λeff, depending on the microscopic length`. The behaviour is then mean-field
like. The equations of motion fora and ā are obtained from the effective action, by the
usual saddle-point argument and read

δS

δā
=
(
∂

∂t
−D∇2

)
a + λeff a

2− J = 0 (7)

and

δS

δa
= −

(
∂

∂t
+D∇2

)
ā + 2λeff āa = 0. (8)

Assuming thata and ā are homogeneous, it follows that, as expected,ā = 0 is a solution
and (7) becomes

∂a

∂t
= −λeff a

2+ J
with the initial conditiona|t=0 = 0. Thus, the mean-field or classical solution is

acl(t) =
√
J

λeff

(
1− 2

exp(−2
√
Jλeff t)

1+ exp(−2
√
Jλeff t)

)
(9)

where the subscript ‘cl’ stands for classical.

2.3. Renormalization

Let us now consider the problem below two dimensions. A brute force computation of
the particle density from (4) leads to divergences. Thus, the coupling constantλ needs
to be renormalized. Neither the fieldsa and ā nor the diffusion constantD require a
renormalization [10, 13] and, as a consequence, the particle input rateJ does not either.

We define the temporally extended vertex functionλ(p, t) to be the sum of the diagrams
shown in figure 1. These diagrams can be summed to all orders and the Laplace-transformed
vertex function reads (see [13])

λ̃(p, s) = λ

1+ 2[λ/(8πD)d/2]0( 1
2ε)(s + 1

2Dp
2)−ε/2

. (10)

We definegR, the dimensionless renormalized coupling (or running coupling constant),
using the minimal subtraction scheme. That is we define

gR = Zgκ
−ε λ

2πD
(11)
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Figure 1. Diagrammatic representation of the temporally extended vertex functionλ(p, t2− t1).
The propagator is represented by a full line. Here the diagrammatic expansion for the trivertex
λāa2 is shown. Similar diagrams can be drawn for the quadvertexλā2a2.

whereκ is a normalization point andZg = 1+∑∞i=1 aig
i
R. The ai are chosen so as to

exactly cancel the poles of order 1/ε appearing iñλ(p, s). From (10), we have

λ̃(p, s) = λ

1+ κ−ελ[1+ εAε(p, s)]/(2πDε)
whereAε(p, s) = O(ε0), for anyp ands. With (11), one finds

λ̃(p, s)

2πD
= κεgR

Zg+ gR/ε + gRAε(p, s)
.

According to our prescription, we have to choosea1 = −1/ε andai = 0 for i > 1, giving
Zg = 1− gR/ε (exact to all orders). Inserting this result into (11), we find

gR = κ−ελ
2πD

(
1+ κ−ελ

2πDε

)−1

. (12)

The computation of theβ function is thus straightforward:

β(gR) ≡ κ ∂gR

∂κ
= −εgR+ g2

R.

It is exactly quadratic ingR and has a fixed point given byβ(g∗R) = 0 at g∗R = ε.
Using (12), we may express the bare coupling in terms of the renormalized one:

κ−ε
λ

2πD
= gR

1− gR/g
∗
R

= gR+ g
2
R

g∗R
+ · · · . (13)

The perturbation theory can then be written as an expansion in powers ofgR.

2.4. Renormalization group equations

An arbitrary renormalized correlation functionGN,N̄
R ({xi, ti}N+N̄1 ) (where the subscript R

stands for renormalized) is related to its bare expression (3) through

G
N,N̄
R ({xi, ti}N+N̄1 ; gR,D, J, κ) = GN,N̄ ({xi, ti}N+N̄1 ; λ,D, J ).

The independence of the bare functions on the normalization scale can be expressed via the
condition (

κ
∂

∂κ
+ β(gR)

∂

∂gR

)
G
N,N̄
R ({xi, ti}N+N̄1 ; gR,D, J, κ) = 0.

The formal solution (obtained by the method of characteristic) is

G
N,N̄
R ({xi, ti}N+N̄1 ; gR,D, J, κ) = GN,N̄

R ({xi, ti}N+N̄1 ; gR(ρ),D, J, ρκ) (14)
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with

gR(ρ) = g∗R
(

1+ g
∗
R− gR

gR
ρε
)−1

. (15)

Note that in the smallρ limit, gR(ρ)→ g∗R.
We can implement (14) with a dimensional analysis. The dimensions of the different

quantities, expressed in term of momentumκ and energyE are

[t ] = E−1 [D] = Eκ−2 [J ] = Eκd
[a] = κd [ā] = 1 [GN,N̄

R ({xi, ti}N+N̄1 )] = κNd.
Thus,

G
N,N̄
R ({xi, ti}N+N̄1 ; gR,D, J, κ) = κNdGN,N̄

R ({κxi, κ2Dti}N+N̄1 ; gR, 1, κ−d−2J/D, 1). (16)

The combination of (14) and (16) leads to

G
N,N̄
R ({xi, ti}N+N̄1 ; gR,D, J, κ)

= (ρκ)NdGN,N̄
R ({ρκxi, (ρκ)2Dti}N+N̄1 ; gR(ρ), 1, (ρκ)−d−2J/D, 1). (17)

We can then use the following strategy to compute the correlation functions: first an
expansion in power ofλ is established; then it is converted into an expansion in power ofgR

through (13). The singularities inε are eliminated using the renormalization scheme. Now,
for a correctly renormalized theory, we can rewrite thegR expansion into anε expansion
using (17) and (15). Indeed, introducing theρ dependence through (17) and lettingρ → 0,

gR(ρ)→ g∗R, one obtainsGN,N̄
R as an expansion in power ofε.

Up to nowρ is an arbitrary parameter, and several choices are possible. For example,
if we chooseρ such that

(ρκ)−d−2 J

D
= 1 (18)

the limit ρ → 0 becomes equivalent toJ → 0: when the source rate is vanishing small,
the running coupling approaches its fixed point value.

Another choice is

(ρκ)2Dt1 = 1

and the limitρ → 0 may be exchanged witht1 → ∞. However, from (17), we see that

(ρκ)−d−2J/D diverges. Thus, with this choice, one should know the behaviour ofG
N,N̄
R

for arbitrary large values ofJ . However, for large values ofJ , the ε-expansion breaks
down (see appendix A). Accordingly, we shall chooseρ according to condition (18) in
what follows.

2.5. Density calculation

The density is first calculated using (4), in the framework of a perturbation expansion in
power ofλ. At the tree level, we find out the mean-field result and we can directly use the
RG equation (no renormalization is needed). The first correction to the classical behaviour
is given by the one-loop contribution. The corresponding diagram may be calculated using
the action obtained from (6) by shifting the fielda by its classical value:

S[η, η̄, J ] =
∫

ddx
∫ t

0
dt̄

[
η̄

(
∂

∂t̄
−D∇2+ 2λacl

)
η + λη̄η2+ λη̄2(a2

cl + 2aclη + η2)

]
(19)
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whereη = a− acl and η̄ = ā, with acl given by (9). The free propagator (which is also the
classical response function) is

Gcl(p, t, t
′) = θ(t − t ′) exp[−Dp2(t − t ′)]

(
cosh(

√
Jλ t ′)

cosh(
√
Jλ t)

)2

.

Note that because of the initial condition,Gcl is not invariant under time translation.
Obtaining divergent expressions for the one-loop corrections, we shall renormalize them
using the renormalization scheme developed above. We give below a summary of these
results.

2.5.1. Tree level. Applying the RG formalism as developed above on the mean-field
equation, we find, forJ sufficiently small,

cR(t; gR,D, J, κ) = 1√
2πε

(
J

D

)d/(d+2)

×
(

1− 2 exp[−2
√

2πε(J/D)2/(d+2)Dt ]

1+ 2 exp[−2
√

2πε(J/D)2/(d+2)Dt ]

)
[1+O(ε)] (20)

which is universal (independent ofgR). This result is valid for any timet , because we only
need to tuneJ to be in the critical domain.

For smallt we find the expected result

cR(t) = J t +O(t2)

and for long time (t →∞)

cR(t) = 1√
2πε

(
J

D

)d/(d+2)

{1− 2 exp[−2
√

2πε(J/D)2/(d+2)Dt ]}[1+O(ε)]. (21)

The steady-state value is thus given by

cR(∞) = 1√
2πε

(
J

D

)d/(d+2)

[1+O(ε)] (22)

and it is approached exponentially in time as

δcR(t) ≡ cR(t)− cR(∞) ∝ exp[−γε(J/D)2/(d+2)Dt ] (t →∞) (23)

with γε = 2
√

2πε[1+O(ε)].

2.5.2. One-loop corrections.The diagram corresponding to the one-loop correction is
given in figure 2; its analytic expression is

c(1)(t) = 2Jλ

cosh2(
√
Jλt)

∫ t

0
dt2

∫ t2

0
dt1

∫
ddp

(2π)d
exp[−2Dp2(t2− t1)]

×cosh2(
√
Jλt1) sinh2(

√
Jλt1)

cosh2(
√
Jλt2)

.

The integral over the momentum gives the factor [8πD(t2− t1)]−d/2. We thus obtain

c(1)(t) = 2Jλ

(8πD)d/2
t1+ε/2

cosh2(
√
Jλt)

∫ 1

0
dx2

∫ 1

0
dx1 x

−1+ε/2
1

×cosh2[
√
Jλx2(1− x1)] sinh2[

√
Jλx2(1− x1)]

cosh2(
√
Jλx2)

.
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Figure 2. One-loop diagram for the density, using action (19). The double line stands for the
free propogatorGcl and the dot for the vertexλa2

c lη̄
2.

In the framework of anε-expansion, we eventually find (treatingx−1+ε/2
1 as a generalized

function [20], see appendix B)

c(1)(t) = 2Jλ

(8πD)d/2
t1+ε/2

cosh2(
√
Jλt)

(
2

ε

sinh(2
√
Jλt)− 2

√
Jλt

2
√
Jλt

+ φ(
√
Jλt)√
Jλt

+O(ε)

)
where

φ(ξ) = ξ
∫ 1

0
dx2 ln x2 sinh2(ξx2)

+ξ
∫ 1

0

dx1

x1

∫ 1

0
dx2

(
cosh2[ξx2(1− x1)] sinh2[ξx2(1− x1)]

cosh2(ξx2)
− sinh2(ξx2)

)
.

Putting together the mean-field result and the one-loop correction, we verify that the density
is indeed divergence free, and using the RG equation (17) we find, for small values ofJ ,

cR(t; gR,D, J, κ) = 1√
2πε

(
J

D

)d/(d+2){
tanh[
√

2πε (J/D)2/(d+2)Dt ]

+ε
2

[
φ[
√

2πε(J/D)2/(d+2)Dt ]

cosh2[
√

2πε(J/D)2/(d+2)Dt ]
+ 1

2
ln[8π(J/D)2/(d+2)Dt ]

×
(

tanh[
√

2πε(J/D)2/(d+2)Dt ]−
√

2πε(J/D)2/(d+2)Dt

cosh2[
√

2πε(J/D)2/(d+2)Dt ]

)]
+O(ε2)

}
=
(
J

D

)d/(d+2)

F [(J/D)2/(d+2)Dt ]. (24)

We immediately identify the scaling functionF defined in (1). Taking the limitt →∞ we
find

cR(∞; gR,D, J, κ) = 1√
2πε

(
J

D

)d/(d+2){
1− ε

4

[
γE− ln

(
2π

ε

)]
+O(ε2)

}
(25)

whereγE is the Euler constant (γE ' 0.5772). Unfortunately, due to the complicated form
of φ, we are unable to give a more compact form for the asymptotics ofF . Note that the
empty initial condition implies that limJ→0 cR(t) = 0.

Let us consider two particular cases of interest. The first one is the caseε = 1 (d = 1).
Then the steady-state density is

cR(∞) = 1√
2π

(
J

D

)1/3

[1− 1
4(γE− ln 2π)+ · · ·] (26)

and it is asymptotically approached (at the tree level) as

δcR(t) ∝ exp[−
√

8π(J/D)2/3Dt ]. (27)
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We shall compare the accuracy of these expressions with exact results in the next section.
Note, however, that, in principle, nothing ensures us that the terms we neglected are small.

The second case isε = 0 (d = 2). The running coupling is given by

gR(ρ) = gR

1− gR ln ρ

which goes to−(ln ρ)−1 whenρ → 0. By replacing this expression in our previous formula,
we find for the steady-state density

cR(∞) =
(

2J

πD

)1/2

[(ln J )−1/2+O((ln J )−1)] (28)

and

δcR(t) ∝ exp[−
√

8π(J/D)1/2 ln(J )Dt ] (29)

as anticipated, logarithmic corrections to the mean-field result are obtained.

3. Exact results in one dimension

A large amount of work has been done to solve exactly one-species diffusion reaction models
in one dimension (see, for example, [21]). In particular, the diffusion-annihilation and the
diffusion-coagulation reactions have been considered with an input of particles. In the
diffusion-annihilation case, Ŕacz [22] obtained the steady-state concentration by mapping
its model to the kinetic Glauber-Ising model [23]. In 1988, Doering and ben-Avraham
[24] calculated the time-dependent concentration exactly for a simple diffusion-coagulation
model, using the interparticle distribution function. Since, their method has been generalized
to other diffusion-coagulation processes (see, for example, [25]) and in particular the steady-
state concentration has been obtained [17] for the diffusion-coagulation with an input source
of particle.

In this section we aim at testing the validity of the RG predictions ford = 1. For
this purpose we shall extend Doering’s and ben-Avraham’s results and compute the time-
dependent concentration.

We consider an infinite chain (our one-dimensional space) initially empty, and we allow
particles to appear randomly at rateJ (per unit time and per unit length). Thus initially

dc(t)

dt

∣∣∣∣
t=0

= J

where c(t) is as before the particle concentration. The particles diffuse on the line
(with a diffusion constantD) and when two particles meet they instantaneously coagulate
(A + A→ A). Note that this model is the same as the pure diffusion-coagulation process
of section 2, but with an infinite reaction rateλ. Of course, for such a reaction rate, the
perturbation expansion in power ofλ is meaningless and one may argue that the two models
are not equivalent. However, by examining the relation (12) between the renormalized
coupling gR and λ, we see that whenλ is infinite, gR = g∗R. We argue that the infinite
reaction rate limit may be obtained by taking the fixed point coupling limit (gR→ g∗R), that
is to say by taking theλ → ∞ limit after having performed the path integrals. This will
be confirmed in the following, at least in one dimension.

In a one-dimensional space, the particle concentration can be related to the probability
E(x, t) that an interval of lengthx > 0 is empty at timet , via

c(t) = −∂E(x, t)
∂x

∣∣∣∣
x=0

.
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As shown by Doering and ben-Avraham [17],E(x, t) has the advantage of obeying a closed
equation of evolution, namely

∂E

∂t
= 2D

∂2E

∂x2
− JxE (30)

with the two conditions

E(0, t) = 1 E(∞, t) = 0. (31)

From this equation, one can immediately obtain the steady state, by setting the left-hand
side to zero. One then recognizes the Airy equation, whose solution is (taking into account
conditions (31))

E(x,∞) = Ai((J/2D)1/3x)

Ai(0)

where Ai(z) is the Airy function (see [26]). As a consequence, the asymptotic concentration
reads

c(∞) = −Ai ′(0)
Ai(0)

(
J

2D

)1/3

. (32)

Ai ′(z) is the first derivative of Ai(z). Note that Ai′(0) < 0.
Before comparing (32) with the RG results, we shall compute the time-dependent part

of the concentration. For this purpose, we shall solve (30) using the Laplace transform
Ẽ(x, s) defined byẼ(x, s) = ∫ t0 dt e−stE(x, t). Equation (30) becomes

2D
∂2Ẽ(x, s)

∂x2
− (Jx + s)Ẽ(x, s)+ E(x, 0) = 0 (33)

whereE(x, 0) is the initial condition (for an empty system,E(x, 0) = 1). Equation (33)
is an inhomogeneous second-order ordinary differential equation. Its general solution is the
sum of the homogeneous solutioñEh(x, s) and a particular solution. The homogeneous
solution is

Ẽh(x, s) =
(
J

2D

)−2/3

[α1(s)Ai(z)+ α2(s)Bi(z)]

wherez = (J/2D)−2/3(Jx + s)/2D, α1(s) andα2(s) are two unknown functions ofs and
Bi(z) is the second Airy function [26].

Writing Ẽ(x, s) = (J/2D)−2/3A(z, s), (33) becomes

∂2A(z, s)

∂z2
− zA(z, s) = − 1

2D
for which a well known solution is

A(z, s) = − π

2D

∫ z

0
dv[Ai (v)Bi(z)− Ai(z)Bi(v)].

The two boundary conditions (31) permit us to determine the two unknown functionsα1(s)

andα2(s). We eventually find for the general solution of (33)

Ẽ(x, s) = π

2D

(
J

2D

)−2/3{
Ai(ξ + σ)

∫ ξ+σ

σ

dv Bi(v)+ Bi(ξ + σ)
[

1

3
−
∫ ξ+σ

0
dv Ai(v)

]
+Ai(ξ + σ)

Ai(σ )

[
1

πσ
+ Bi(σ )

(∫ σ

0
dv Ai(v)− 1

3

)]}
(34)

whereξ = (J/2D)1/3x andσ = (J/2D)−2/3s/2D.
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The probabilityE(x, t) is then obtained by Laplace inverting (34). Fort > 0, we
only have to care for the poles of̃E(x, s). They are located atσ = 0 and atσ = an,
n = 1, 2, 3, . . . , wherean is thenth zero of Ai(x) (an < 0). We finally obtain

E(x, t) = Ai(ξ)

Ai(0)
+
∞∑
n=1

Ai(ξ + an)
Ai ′(an)

[
1

an
+ πBi(an)

(∫ an

0
dv Ai(v)− 1

3

)]
e−|an|τ

with τ = 2Dt(J/2D)2/3 and

c(t) =
(
J

2D

)1/3{
− Ai ′(0)

Ai(0)
−
∞∑
n=1

[
1

an
+ πBi(an)

(∫ an

0
dv Ai(v)− 1

3

)]
e−|an|τ

}
. (35)

We are now in position to compare these results with the RG results forε = 1. For the
steady state, the RG method gives (up to the one-loop corrections) (26)

cR(∞) ' 0.53

(
J

D

)1/3

(36)

(for small J ) while (putting t = ∞ inside (35)) the exact solution gives

c(∞) = −Ai ′(0)
Ai(0)

(
J

2D

)1/3

' 0.58

(
J

D

)1/3

(37)

(for arbitraryJ ). Surprisingly, the difference is only of the order of 10%.
The comparison for the approach to the steady state is less convincing, mainly due

to the fact that we do not know the one-loop corrections. The RG method gives, from
equation (27),

δcR(t) = −
[

1− 1

4
(γE− ln 2π)

](
2

π

)1/2(
J

D

)1/3

exp[−
√

8π(J/D)2/3Dt ]

' − 1.06

(
J

D

)1/3

exp[−5.01(J/D)2/3Dt ] (38)

whereas the exact result is

δc(t) =
[

1

a1
+ πBi(a1)

(∫ a1

0
dv Ai(v)− 1

3

)](
J

2D

)1/3

e−|a1|τ

' − 1.10

(
J

D

)1/3

exp[−2.95(J/D)2/3Dt ] (39)

(with a1 ' −2.33). Both amplitudes in front of the exponential are in good agreement
(because we used the one-loop result of the steady state). However, the tree-level amplitude
into the exponential is quite different (of almost 70%) from the one given by the exact theory.
The inclusion of the one-loop correction should lead to a better agreement.

Note that the exact results are valid without any restriction onJ , in contrast to the RG
results, which apply only for smallJ . This restriction was introduced to ensure thatgR is
inside the critical domain (i.e.gR nearg∗R). In view of the predictions of the exact theory,
it turns out that this restriction overJ is unnecessary. The coupling stays inside the critical
domain for any value ofJ . This justifies why, whenλ→∞, gR→ g∗R. We can make this
point clearer. Indeed, expanding the running coupling constant (15) for smallJ , we can
identify

Jc = D
(

λ

2πDε

)(d+2)/(2−d)

as a crossover scale forJ . The critical domain is thus obtained whenJ � Jc. This scale
grows whenλ grows or whenε decreases.
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4. Discussion and conclusive remarks

We have shown that the RG method is a suitable formalism to compute the density in a
wide class of diffusion-reaction models, with an input of particles. In particular, we have
easily calculated the critical exponents in arbitrary dimension. However, the computation
of the universal scaling function is generally much more difficult (see, for example, (24))
and can only be achieved within a power expansion inε = 2−d. However, the comparison
of the first-order results forε = 1 are not too far from the results obtained exactly in one
dimension by a different approach.

One of the main interests of the RG method is that, contrary to most unidimensional
exact approaches, the RG approach is not restricted to the computation of the particle
density and higher correlation functions can also be calculated (although the computation
can become quite involved, see [13]). Moreover, the RG approach provides a framework
in which universality can be established. This is not the case of an exact solution obtained
for particular models.

Another advantage of the RG approach is the fact that the properties of a whole class of
model can be simply related. This allows us using (5), and knowing the particle density for
the diffusion-coagulation model, to obtain the density of any mixed annihilation-coagulation
process. In particular, for the pure diffusion-annihilation model (α = 2) in one dimension,
one recovers the steady-state density previously calculated by Rácz [22].

The present work can be generalized in several directions. Generalization tomA→ ∅
(m > 2) reactions with a source of particles is also straightforward. Indeed, following Lee
[13], it turns out that apart the lowering of the critical dimension todu = 2/(m− 1), only
minor changes occur (for example, the amplitudes becomem-dependent). This is due to the
fact that in our renormalization scheme only the fixed pointg∗R of the coupling is modified.
The structure of the equations remain unchanged and, in particular, the RG equation (17)
still holds. As a consequence, the critical exponents belowdu are the same as form = 2.
The steady-state concentration can be written (ford < du) as

cm,R(∞) = Am
(
J

D

)d/(d+2)

and the universal amplitudeAm can be computed within anε-expansion. The approach to
the steady state is still exponential withk-dependent amplitudes. Extension to the reactions
mA→ lA with l < m (m > 2) is also possible (see [13]).

Another natural extension of this work is to consider the possibility of reversible reaction
(for example,A+ A
 A). For such a system a completely different physics is expected.
Indeed, a quick investigation of the associated action shows that the upper critical dimension
is no longer 2 but 4. In addition, it appears that a wavefunction renormalization is needed,
giving rise to anomalous dimensions. The computation of scaling functions for this problem
is currently under investigation.

Appendix A

We aim to show that in the limitJ →∞, the ε-expansion breaks down. For this purpose,
let us consider the action (19) obtained by the shift of the fielda by its classical value.
The shift permits us to suppress the source term in the action; in other words, shifting the
field is equivalent to perform the infinite sum generated by the source term. One could
then think that any quantity can be calculated for arbitraryJ . This is, however, not true for
the following reason. To calculate a given quantity, we expand the action with respect to
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the λη̄2(a2
cl + 2aclη + η2) term. We shall then obtain a power expansion in term ofλ with

coefficient proportional toa2
cl. However, for largeJ , acl tends to(J/λ)1/2. The expansion

in λ is partly replaced by an expansion inJ , which does not lead to anε-expansion. The
only possibility to revert this would be to treat non-perturbatively the action, which is out
of the question.

Appendix B

The problem is to compute theε-expansion of∫ 1

0
dx x−1+εf (x). (B1)

Putting naivelyx−1+ε = x−1[1+ ε ln x +O(ε2)] in (B1) clearly fails, because iff (0) 6= 0,∫ 1
0 dx x−1f (x) diverges. One way to avoid this problem is to treatx−1+ε as a generalized

function. We shall not give here a detailed discussion of the generalized functions (see [20]
for an introduction). We only quote the result, namely∫ 1

0
dx x−1+εf (x) = 1

ε
f (0)+

∫ 1

0
dx x−1[f (x)− f (0)]

+ε
∫ 1

0
dx x−1 ln x[f (x)− f (0)] +O(ε2).

Note that there is a pole of order 1/ε.
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